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First- and higher-harmonic wave loads on a vertical circular cylinder are investigated
experimentally in a wave tank of small scale. The incoming waves are (periodic) Stokes
waves with wave slope up to 0.24. A large set of waves which are long compared to the
cylinder radius is calibrated. The first seven harmonic components of the measured
horizontal force on the cylinder are analysed. The higher-harmonic forces are signif-
icantly smaller than the first-harmonic force for all wave parameters. The measure-
ments are continued until the wave amplitude is comparable to the cylinder radius,
where the second-, third- and fourth-harmonic forces become of comparable size.
Comparison with existing perturbation and fully nonlinear models shows, with a few
exceptions, an overall good agreement for small and moderate wave amplitude. A fully
nonlinear model agrees with the experiments even up to the seventh-harmonic force for
part of the amplitude range. For the large amplitudes the models mostly give conserva-
tive predictions. It is important that the distance from the wave maker to the cylinder
is large in order to avoid parasitic effects in the incoming wave field. The limited
width of the wave tank is not important to the results except when close to resonance.

1. Introduction
Tension-leg and gravity-based platforms constructed from vertical cylinders may

have a resonance period of up to a few seconds. These platforms may in high sea states
experience responses of considerable amplitude that are very suddenly generated at
the resonance period of the platform. This is a concern with respect to extreme
loading. The generation of such responses, so-called ‘ringing’, is characterized by a
resonant build-up during a time interval of the order one wave period. The wave
period when this occurs may be several seconds, typically about 15 s. This is several
times longer than the resonance period of the platform. The generation mechanism
of the higher-harmonic wave loads leading to ringing of offshore structures is not yet
well understood.

In recent times several attempts have been made to analyse this problem. The
investigations are both theoretical and experimental. On the theoretical side, per-
turbation methods have been developed under the assumption of incoming Stokes
waves. The objective has been to capture the wave loads up to the third-harmonic
component (Faltinsen, Newman & Vinje 1995; Malenica & Molin 1995; Newman
1996a). Fully nonlinear methods have also been developed to analyse this problem
(Cai & Melum 1996; Ferrant 1998). Several model tests and small-scale experiments
have been undertaken, primarily on focused waves or irregular waves (Grue, Bjørshol
& Strand 1993; Stansberg et al. 1995; Chaplin, Rainey & Yemm 1997).
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To check the soundness and the domain of validity of the best numerical calculation
methods for ringing analysis, it may be desirable to have available a set of experimental
force measurements on periodic waves. A direct comparison of the first few harmonic
force components can then be performed. This is the motivation of the present
investigation. Small-scale experiments are undertaken with the purpose of measuring
the horizontal higher-harmonic wave loads on a slender vertical circular cylinder in
a wave tank. A relatively large range of wave amplitudes is investigated for waves
which are long relative to the cylinder radius.

We have chosen to work with incoming Stokes waves in deep water. This corre-
sponds to the assumptions in the perturbation methods. Moreover, the velocity field
of the incoming waves has only one frequency, up to a relatively large wave slope.
The higher-harmonic wave forces are then caused by the presence of the cylinder in
the waves. We have put much effort into documenting the incoming wave field at
the positions in the wave tank where the force measurements are carried out. The
incoming waves become periodic, after a transient leading part, and for a time are
not disturbed by parasitic waves. We carry out the force measurements in this period
of time. At a later time, second-harmonic parasitic waves appear in the wave field.
Our measurements of these waves agree with those of previous investigations, e.g.
Schäffer (1996).

When the calibration of the incoming waves is finished, one of the two cylinders
which are used in the experiments is mounted in the tank. The force measurements
are carried out at a position 10 to 20 wavelengths from the wave maker. Since the
incoming waves are long relative to the cylinder radius, the first-harmonic diffracted
wave field is small. The higher-harmonic diffracted waves are quite visible, on the
other hand.

As mentioned above, the force measurements are performed when the wave motion
at the cylinder has become periodic. We shall find that the first-harmonic force always
dominates the higher-harmonic forces. The latter are, however, of significant size, and
we are able to analyse the complex force components up to the seventh harmonic.
We compare the force measurements with available theoretical results, primarily for
the first- second- and third-harmonic forces. The fully nonlinear model by Ferrant
(1998) can, however, produce results for any of the harmonic forces. We compare
our measurements with his computations and find rather good agreement up to the
seventh-harmonic force, for part of the wave amplitude range of the experiments.

The ratio of the width of the wave tank to the cylinder diameter is 6–8 in this
investigation. We find that the limited width of the wave tank is not important to
the results, however, except when close to resonance. This means that a comparison
between the experiments and the theoretical models is relevant, even though in the
latter case the effect of tank walls is not included. During the course of the work we
have found that the distance from the wave maker to the cylinder should be great, in
order to avoid parasitic effects in the incoming wave field.

The paper is organized as follows. Following this Introduction, the experimental
set-up is described in § 2. The incoming wave field is described and documented in
§ 3. The analysis of the force measurements and comparisons with theoretical models
and other relevant experiments are presented in § 4. In § 5 certain oscillations of
the force with respect to the wave slope are discussed. The oscillations are due to
(unwanted) parasitic effects of the incoming wave field, which take place either when
the recordings are performed in a late time window, or when the cylinder is too close
to the wave maker. The effects of viscosity and separation are also commented on in
§ 5. Finally, § 6 is a conclusion.
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Figure 1. The wave tank for the case when the small cylinder is placed 12.41 m
from the wave maker.

2. Experimental set-up
The measurements are carried out in a wave tank which is 24.6 m long, 0.5 m wide

and filled with water to a depth of 0.6 m. At one end of the tank there is a wave maker
consisting of a vertical plate (see figure 1). For controlling and monitoring the wave
maker, and to record the surface elevation and the forces on the cylinder, we have
used a computer with the data acquisition cards AT-MIO-16E-1 and AT-MIO-64E-3
from National Instruments. The update rate of the wave maker, and the sampling
rate of the data acquisition, is 1000 Hz. At the opposite end of the wave tank there
is an absorbing beach which reflects less than 3% of the amplitude of the incoming
waves. The measurements are, however, taken before any small reflected waves at
the fundamental frequency arrive at the cylinder. The motion of the wave maker is
sinusoidal with constant amplitude, apart from a short initial period of 1 s, when
the amplitude function rises from zero to the value of 0.99. The amplitude function
has the form of a tanh-function. The generated wave train has a leading transient
part, but is otherwise periodic, to a good approximation. First we calibrate the waves
without the cylinder present in the wave tank. There are no measurements of wave
elevation with the cylinder present.

We use standard resistance-type wire probes with Churchill amplifiers, to record the
wave elevation. The wire probes have a nonlinearity of less than 1%. The amplifiers
are calibrated statically at an accuracy of 0.25%. During the time of the experiments,
we experience a drift of up to 1.5% out of calibration. The homogeneity of the water
is an important factor in reducing the drift in the calibration. The amplifiers have
also been tested using dynamic calibration. For different frequencies the error in the
calibration ranges from –0.5% to +1.6%. Due to the somewhat random nature of
these errors, we have not attempted to use any kind of transfer function in the analysis
of the data. The reported wave amplitudes thus result from the Fourier transform of
the pure data from the wave elevation amplifiers. Thus the errors in the measurements
of wave elevation may in the worst case be about 4%. However, the actual relative
error is believed to be smaller.

Two different cylinders are used in the experiments. One has radius R = 3 cm and
the other has radius R = 4 cm. Both cylinders extend through the entire water depth.
The resonance period of the cylinder in this set-up is measured to be 25 Hz. The
cylinder is mounted rigidly to the wave tank by two force transducers, one at the
bottom and one on top of the cylinder (figure 2).

The force transducers that have been used are Hottinger Baldwin Messtechnik
Type Z6C2. We measure force in the longitudinal direction of the wave tank, and
refer to the sum of the recorded forces as the force F . The force measurements are
analysed by taking the Fourier transform over 10 wave periods, to evaluate the first
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Figure 2. The wave tank in the plane orthogonal to the length of the tank.

seven harmonic components of F , i.e.

F = Re(F1e
iωt + F2e

i2ωt · · ·+ F7e
i7ωt + · · ·), (2.1)

where ω is the angular frequency of the waves and t is the time.
The first-harmonic wave amplitude A in the experiments, and the wavenumber k,

are varied such that the wave slope Ak is between 0.05 and 0.24. The ratio A/R is
between 0.13 and 1.14. The cylinder is placed at four different positions in the wave
tank, at a distance from the wave maker varying from 6.33 m to 15.45 m. We measure
the wave elevation at each of these four positions, at the exact position of the centre
of the cylinder (which is mounted in the wave tank when the wave calibrations are
finished). We also measure the wave elevation at 10 sub-positions within about one
wavelength of the main position.

3. The wave input
As already noted, the incoming waves are measured at various positions, time

windows, frequencies and amplitudes. For each cylinder we have chosen four different
frequencies for the waves, giving a total of eight. Several of the frequencies are chosen
so that we excite both cylinders with waves of the same non-dimensional wavenumber
(table 1). In the table, T denotes the wave period, f = 1/T , and λ = 2π/k denotes
the wavelength.

For one frequency, f = 1.425 Hz, we have performed an extended series of measure-
ments at four main positions and at 10 sub-positions around each main position, so
that the waves are measured at 40 positions at a distance from the wave maker
which is between 6 and 16 m. The purpose is to study how the waves develop as they
propagate down the wave tank.

We primarily present force measurements for the small cylinder 12.41 m from the
wave maker, and for the large cylinder 15.41 m from the wave maker. For each, the
incoming waves are measured at 10 sub-positions, for 16 different amplitudes per
wave frequency, giving a total of 1280 measurements of the incoming waves. The
wave field is examined at different times after the start-up of the wave maker.

3.1. How to avoid the parasitic waves

A common problem in this type of experiment is the so-called parasitic waves, i.e. the
free second-harmonic waves which originate at the wave maker. Here we circumvent
this problem by taking the measurements before the parasitic waves have reached
the cylinder. Below we show experimentally that the parasitic waves are absent for a
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R = 3 cm R = 4 cm

f = 1/T (Hz) 1.171 1.300 1.425 1.615 1.009 1.123 1.399 1.532
λ (m) 1.14 0.92 0.77 0.60 1.51 1.23 0.80 0.67
max (A/R) 1.145 0.931 0.776 0.603 1.145 0.931 0.603 0.503
kR 0.166 0.204 0.245 0.315 0.166 0.204 0.315 0.378

Table 1. Parameters for the incoming waves onto the cylinders of radius R = 3 and 4 cm.
Wavelengths and wavenumbers are calculated for the linear case.

relatively large portion of the time of an individual measurement. We take all of the
force measurements in this time window.

We measure the components of the second-harmonic wave elevation as explained in
Grue (1992). We assume that the second-harmonic component of the waves η(2)(x, t)
is of the form

η(2)(x, t) = a
(2)
l cos (2(kx− ωt)) + a

(2)
f cos (k2x− 2ω(t− t0)), (3.1)

where ω and k satisfy the dispersion relation ω2 = gk(1 + O(A2k2)) tanh kh, 2ω
and k2 satisfy (2ω)2 = gk2 tanh k2h, and where g is the acceleration due to gravity.
Furthermore a(2)

l is the amplitude of the locked second-harmonic Stokes wave, a(2)
f

is the amplitude of the free second-harmonic wave, t0 determines the phase of the
free wave relative to the locked wave, and x is the distance to the wave maker. For
all wave parameters in the present investigation, we have ω2 ≈ gk(1 + A2k2) and
4ω2 ≈ gk2, which means in practice that the waves are deep water waves.

The second-harmonic Fourier component of the wave elevation is obtained by

η̂(2)(x) =
1

10T

∫ 10T

0

η(2)(x, t)e−i2ωt dt. (3.2)

By measuring η̂(2)(x) at two positions, x1 and x1 + ∆x, we obtain the amplitudes of
the individual components of the second-harmonic wave elevation for a time interval
of 10 wave periods. We then have (Grue 1992, equations 12 and 13)

a
(2)
l =

1

| sin (k∆x)| |η̂
(2)(x1)− ei4k∆xη̂(2)(x1 + ∆x)|, (3.3)

a
(2)
f =

1

| sin (k∆x)| |η̂
(2)(x1)− ei2k∆xη̂(2)(x1 + ∆x)|. (3.4)

Since the parasitic waves travel at half the speed of the main waves, they take twice
as long to arrive at the cylinder as the leading part of the wave train. We thus have
a time window where the parasitic waves have not yet reached the cylinder, there
are no reflections from the beach, and the waves have become reasonably periodic.
We have found that this time window begins at about 10–15 wave periods after
the leading part of the wave train has reached the cylinder. An illustration of the
time histories of the wave elevation and the corresponding force on the cylinder is
provided in figure 3, where the actual time window (of reasonably periodic waves) is
35.088 s < t < 42.105 s (10 wave periods). In this time window we get a very small
amplitude of the free second-harmonic wave elevation for wave slopes up to 0.2,
indicating that parasitic waves are not present, see figure 4(a). Parasitic waves are
present in a later time window, however, as we see in figure 4(b). The amplitude of
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Figure 3. The time history of the wave elevation and the force on the small cylinder 12.41 m from
the wave maker. In this case the time window we are using for the force measurements is from
35.088 s to 42.105 s, i.e. 10 wave periods. The curve with the greater amplitude represents the wave
elevation. Here f =1.425 Hz and Ak = 0.10
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Figure 4. 1280 measurements (crosses) of free second-harmonic waves (parasitic waves) for
f = 1.009, 1.123, 1.171, 1.300, 1.399, 1.425, 1.532, 1.615 Hz. Stokes theory (solid line) for the second-
harmonic locked wave, 1

2
A2k. Data (squares) due to Schäffer (1996). (a) Early time window. (b) Late

time window.
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Figure 5. 1280 measurements (crosses) of locked second-harmonic waves for f = 1.009, 1.123, 1.171,
1.300, 1.399, 1.425, 1.532, 1.615 Hz. Stokes theory (solid line) for the second-harmonic locked wave,
1
2
A2k. (a) Early time window. (b) Late time window.

the parasitic waves is about 1
3

of the amplitude of the second-harmonic locked wave,

i.e. a(2)
f ≈ a

(2)
l /3 ≈ 1/6A2k. After the parasitic waves have reached the cylinder, their

amplitude is reasonably constant in time. In Schäffer (1996), the parasitic waves are
calculated and measured in a set-up approximately similar to ours, for frequencies
1 Hz and 1.25 Hz, and wave slope of about 0.21. We see in figure 4(b) that our extensive
measurements of the parasitic waves are in good agreement with Schäffer’s results.

The locked second-harmonic Stokes waves are in reasonable agreement with Stokes
theory (figure 5) for wave slopes up to 0.2, both before and after the parasitic waves
have arrived at the position of the measurements. This means that a(2)

l ≈ 1
2
A2k. We

see that we have some experimental scatter at low wave slopes in our measurements.
This is due to the fact that the amplitude of the waves is very small. Further details
of the incoming wave field and how to accurately obtain the Fourier transform of the
various time histories are described in the Appendices A and B.
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Figure 6. Wave height (ηmax − ηmin) at 40 different positions. Parameters: Ak = 0.15, f = 1.425 Hz.
(a) Before and (b) after the parasitic waves have reached the cylinder.

In these experiments we could have employed a second-order wave maker theory
to cancel out the parasitic waves. Third- and higher-harmonic free waves would still
be present in the incoming waves, and would possibly affect the measurements of
the third- and higher-harmonic forces. Since we take the measurements before the
second- and higher-harmonic free waves reach the cylinder, such waves do not affect
the measurements.

For further illustration of non-existence of the parasitic waves, we also show the
wave elevation at 30 new positions (a total of 40) in the wave tank, for waves of
frequency f = 1.425 Hz, in order to study how the waves develop as they propagate
along the wave tank. The absence of parasitic waves is seen in figure 6, for the case
of a wave with wave slope 0.15. In a time window before the parasitic waves have
arrived at the measuring position, the waves propagate along the tank without any
large oscillations in the wave height (figure 6a). When we choose a time window after
the parasitic waves have reached the measuring position, we get oscillations of the
wave height as we move further down in the wave tank (figure 6b). We note that the
oscillations at the position closest to the wave maker in figure 6(a) are due to the fact
that it is impossible to find a long enough time window (with periodic waves) where
the parasitic waves have not reached the measuring position.

We observe that the amplitude of the waves decreases as a result of viscosity, by
about 0.6% per wavelength. The frequency of the waves is measured to be exactly
the same at all of the 40 measuring positions along the wave tank.

From these extensive measurements we can conclude that force measurements may
be carried out in a reasonably long time window, where the incoming waves are quite
periodic. The surface elevation may be regarded as close to pure Stokes waves up to
Ak ≈ 0.2, i.e.

η(t) = A cos (kx− ωt) + a
(2)
l cos (2(kx− ωt)) + a

(3)
l cos (3(kx− ωt)) + · · · , (3.5)

where a(2)
l ≈ (1/2)A2k and a

(3)
l ≈ (3/8)A3k2, according to Stokes theory. This also

indicates that the incoming waves are represented by the velocity potential

φ = Re

[
Ag

iω
ekyei(kx−ωt)

]
+ O(A4), (3.6)

which determines the corresponding velocity and pressure fields. Here ω2 = gk(1 +
A2k2) and y denotes the vertical coordinate with y = 0 at the initially calm free
surface.
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4. The force
The first seven harmonic components of the force are presented. For all wave-

numbers but one, we present measurements for wave slopes up to 0.2, since this is the
range for which we know the wave input. For higher wave slopes when the waves can
no longer be considered to be known, the force measurements will not have much value
since there is no information on what causes the forces. However, for the wavenumber
of kR = 0.245, we present measurements for wave slopes up to 0.24, to show the
trend in the force as the wavenumber becomes greater, even though the force at these
large wave slopes cannot be directly connected to an amplitude of a Stokes wave.

The amplitude of the nth harmonic force is made non-dimensional dividing by ρgAn

R(3−n). The phase of the nth harmonic force is obtained relative to the phase of the
incoming waves. The phase of the incoming waves, at a given position in the tank,
changes as the wave amplitude increases, due to amplitude dispersion. The phase of
the resulting force on the cylinder changes accordingly.

The typical error in the measured wave elevation is about 2%. This will introduce
an error in the amplitude and phase of the non-dimensional nth harmonic force which
is about n times 2%. Since the force transducers are very accurate compared to the
wave gauges, we could alternatively relate the nth harmonic force components to the
component of the force oscillating with the fundamental frequency. This alternative
procedure is not applied in this paper.

The force measurements are compared with theoretical models. The Morison equa-
tion and the McCamy–Fuchs solution may be applied to compute the first-harmonic
force. Molin (1979) and later Newman (1996b) have employed a second-order model
for calculation of the second-harmonic wave force. Malenica & Molin (1995, here-
after referred to as M&M), have developed a third-order model using a perturbation
expansion in the wave slope. A model of the third-harmonic force, using a pertur-
bation expansion in both the wave slope and the wavenumber, has been developed by
Faltinsen et al. (1995, hereafter referred to as FNV). Ferrant (1998) has carried
out fully nonlinear computations to calculate all higher-harmonic components of
the force. The incoming waves in our experiments, which are pure Stokes waves,
correspond to the assumptions in the theoretical models.

For a very limited range of parameters, we also compare our measurements with
experiments performed by Stansberg (1997).

While the experiments are carried out in a wave tank with a limited width b,
all the theoretical models assume an unbounded horizontal fluid domain. However,
with a ratio b/R from 6.3 to 8.3, we find that the limited width of the tank is not
important to the investigation, except close to resonance, when standing cross-waves
are generated at the cylinder. We present no results for wave parameters close to
resonance.

4.1. First-harmonic force

To obtain an estimate of the first-harmonic force we may apply the Morison equation,
giving the simple result F1 = 2πρgAR2eiπ/2. We may also, however, calculate the
complete linear exciting force by the McCamy–Fuchs solution, giving in deep water

F1 =
4ρgA

k2H
(2)′
1 (kR)

, (4.1)

where H (2)
1 is the Hankel function of the second kind and order one, and the prime

denotes differentiation. Furthermore, F1 may be obtained from the fully nonlinear



84 M. Huseby and J. Grue

7.2

6.8

6.4

6.0
0.04 0.08 0.12 0.16

kR=0.166

7.2

6.8

6.4

6.0
0.04 0.08 0.12 0.16

kR=0.204

7.2

6.8

6.4

6.0
0.05 0.10 0.15 0.20

kR=0.245

7.2

6.8

6.4

6.0
0.04 0.08 0.12 0.16

kR=0.315

7.2

6.8

6.4

6.0
0.04 0.08 0.12 0.16

kR=0.378

0

0

0

0

0

Ak

|F
1|

/(
qg

A
R

2 )
R=3 cm
R=4 cm

Figure 7. Squares and diamonds: measured amplitude of the first-harmonic force. Solid line: the
Morison equation. Dashed line: the McCamy–Fuchs solution. For kR = 0.245 Ferrant’s nonlinear
computations are represented by the dashed line with crosses.

computations by Ferrant. A drag force due to the laminar boundary layer in the
experiments may be estimated to be 0.1πρgAR2, approximately, for the two cylin-
ders. This drag force is very small, and is not accounted for in the figures. Figure
7 shows a comparison of our measurements for the amplitude of the first-harmonic
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linear models. Solid line: the Morison equation. Dashed line: the McCamy–Fuchs solution. For
kR = 0.245 Ferrant’s nonlinear computations are represented by the dashed line with crosses.

force with the model estimates, with good agreement. The phase of the first-harmonic
force (figure 8) is also predicted quite well by the computations. For the two largest
wavenumbers, however, the phase of the measured first-harmonic force seems to be
a bit larger than predicted, for small wave slopes. We note that the amplitude and
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Newman (1996b). For kR = 0.245 Ferrant’s nonlinear computations are represented by the dashed
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phase of the force are both approximately constant for the whole range of wave

slopes, even when Ak has become quite large, and the expected range of validity of

the perturbation models is exceeded.



Higher-harmonic wave forces on a vertical cylinder 87

R=3 cm
R=4 cm

0.04 0.08

kR=0.166

3

2

1

0.12 0.16

0.04 0.08

kR=0.2042

1

0.12 0.16

0.05 0.10

kR=0.245
3

2

1

0.15 0.20

kR=0.315
2

1

0

0.04 0.08

kR=0.3782

1

0.12 0.16

0

0

0

–1
0.04 0.08 0.12 0.160

0

0
Ak

A
rg

(F
2)

0

Figure 10. Squares and diamonds: measured phase of the second-harmonic force. Straight line:
Newman (1996b). For kR = 0.245 Ferrant’s nonlinear computations represented by the dashed line
with crosses.

4.2. Second-harmonic force

For the second-harmonic force we compare our measurements with the second-
order model by Molin (1979) and Newman (1996b) and with the fully nonlinear
computations by Ferrant (1998). We observe that the amplitude of the second-
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Figure 11. Squares (R = 3 cm) and diamonds (R = 4 cm): measurements of the amplitude and
phase of the third-harmonic force with kR = 0.166. Straight solid line: FNV; straight dotted line:
M&M.

harmonic force (figure 9) decreases as the wavenumber increases. The measured forces
are smaller than the theoretical forces for all wave slopes. For large wave slopes, the
measured force is significantly smaller than the theoretical results. The results by
Ferrant predict the decrease of the force, observed in the experiments, though the
measured force is smaller than predicted. The phase of the second-harmonic force
(figure 10) is, however, quite constant as the wave slope increases, and is well predicted.

4.3. Third-harmonic force

For all but the smallest wavenumber, the measurements show that the amplitude of
the third-harmonic force is nearly constant as the wave slope increases. There is good
agreement between the measurements and the theoretical predictions of |F3| by FNV,
M&M and Ferrant (figures 11–15). For the phase of F3, the measurements agree with
M&M’s and Ferrant’s results. We note that the FNV model provides a very simple
result for the third-harmonic force, i.e. F3/ρgA

3 = 2π(kR)2eiπ/2. This model, however,
predicts a value of the phase which is significantly different from our measurements.
The phase predicted by FNV does not vary as a function of the wavenumber.
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Figure 12. As figure 11 but with kR = 0.204.

We note that the third- and higher-harmonic forces are extremely small when
the wave slope is small. For example, F3 is 100 to 400 times smaller than F1

when Ak ≈ 0.05. This introduces difficulties in measuring and extracting the higher-
harmonic components from a much larger signal. As we see in some of the figures,
this causes some experimental scatter in the results, for small Ak (i.e. we have a larger
relative measuring error for small Ak). Because of this we are not able to measure the
third-harmonic force for wave slopes smaller than Ak = 0.05. Further details of how
the higher-harmonic forces are extracted from the time series are given in Appendix B.

4.4. Fourth-harmonic force

The measurements of the fourth-harmonic force are displayed in figures 16 and 17.
For one of the wavenumbers we compare with the computations by Ferrant. Because
of the small size of the fourth-harmonic force, we cannot give experimental data for
wave slopes less than about 0.1. We see that our measurements are in surprisingly
good agreement with Ferrant’s results, both for the amplitude and phase of the
force. We further note that the value of |F4|, to a rough approximation, behaves as
|F4|/(ρgA4R−1) ∼ kR, for kR 6 0.315 and moderate wave slope.
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Figure 13. As figure 11 but for R = 3 cm only and kR = 0.245. Crossed line: nonlinear
computations by Ferrant.

4.5. Higher-harmonic forces

We also display measurements of the amplitude and phase of the fifth-, sixth- and
seventh-harmonic force components for one wavenumber (kR = 0.245) in figures 18–
20. For these increasingly higher harmonics we require the waves to be increasingly
large before we are able to measure the very small force components. We compare
our measurements with the nonlinear computations by Ferrant. His results could not
be obtained for wave slopes larger than Ak = 0.145, and our measurements for these
higher harmonics could not be done for wave slopes much smaller than this. The
common domain of the measurements and the calculations is thus quite small. The
trend of the results, however, shows good agreement, taking into account the small
size of the measured forces. The measured amplitude of the forces and theoretical
results show an agreement which is well within the measurement accuracy for these
extremely small forces. The measured phase of the forces is somewhat larger than
predicted by theory.

4.6. Other experiments

Stansberg (1997) has taken measurements of the amplitude of the second- and third-
harmonic force on several cylinders in periodic waves in a towing tank which is 80 m
long, 10 m wide and 10 m deep. The draughts d of the cylinders were 1.44 and 0.94 m,
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Figure 14. As figure 11 but with kR = 0.315.

and the radii 10, 16.3 and 31.3 cm. We compare our measurements with those of
Stansberg where the non-dimensional wavenumber kR and draught d/R have a size
relevant to our measurements, i.e. we compare our measurements with parameters
kR = 0.166 and d/R = 15 or 20 (R = 4 cm or 3 cm) to Stansberg’s measurements
with parameters kR = 0.149 and d/R = 8.8 (R = 16.3 cm). As we see in figure 21, our
measurements are in relatively good agreement with Stansberg’s.

It is interesting to see that both our measurements and his give a decreasing
amplitude of the third-harmonic force (figure 21b) for small to medium wave slopes.
For Ak larger than 0.2 the measurements indicate that the amplitude of the third-
harmonic force is constant.

The other results of Stansberg for d/R smaller than 8.8 show smaller values of |F2|
and |F3| than obtained in our experiments. We believe that this is due to the limited
draught of the cylinders in Stansberg’s experiments.

5. Oscillating force and effects of viscosity
5.1. Oscillating force

As already mentioned, when we take measurements 12.41 m from the wave maker, we
first wait for the waves to become periodic (10–15 wave periods from when the first
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Figure 15. As figure 11 but for R = 4 cm only and kR = 0.378.

large wave has reached the cylinder). We may then take measurements over a time
window of 10 wave periods before the wave field is disturbed by unwanted effects.
The amplitude of e.g. the second-harmonic force will then look like that displayed in
figure 22(a). When the force measurements are carried out in a later time window,
we obtain an oscillation in the second-harmonic and higher-harmonic forces (figure
22b). The force oscillates around a mean value which corresponds to the force in an
earlier time window (figure 22a). After this change of character, the measured force
does not change as time increases, except for some small fluctuations which appear
when the time elapsed is so long that these are reflections from the beach and the
wave maker.

The same behaviour of the measured forces also occurs when the cylinder is
situated at other positions in the wave tank. We have in particular investigated the
higher-harmonic forces when the cylinder is placed close to the wave maker, at a
distance of 6.33 m. An example for the second-harmonic force is shown in figure 23.
The same oscillations, but with a smaller frequency, occur in a late time window. At
this position, minor oscillations are also present in an early time window because it
is impossible to find a sufficiently long time window this close to the wave maker
where the incoming waves can be regarded as pure Stokes waves. Similar oscillations
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Figure 16. Crosses and stars: measured amplitude of the fourth-harmonic force. For kR = 0.245
Ferrant’s nonlinear computations are represented by the dashed line with crosses.

occur also for the other higher-harmonic forces. We note that the time at which
the change of character occurs in the force measurements coincides with the time
when the second-harmonic parasitic waves arrive at the cylinder. This may indicate
that the parasitic waves are the cause of the oscillations of the force. To document
this, one would have to perform the same experiments with waves that are known
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Figure 17. Squares and diamonds: measured phase of the fourth-harmonic force. For kR = 0.245
Ferrant’s nonlinear computations are represented by the dashed line with crosses.

to be absolutely free from second-harmonic parasitic waves at all times. We note,
however, that other nonlinear effects may lead to oscillations in the second- and
higher-harmonic forces but our investigation gives no evidence on this point.

As we have seen, there exists a time window in which we can perform force
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Figure 18. Squares: measured amplitude and phase of the fifth-harmonic force with kR = 0.245.
Ferrant’s nonlinear computations are represented by the dashed line with crosses.

measurements without getting oscillations in the force as the wave slope increases.
The length of this time window will be proportional to the distance from the wave
maker to the cylinder. Too close to the wave maker, there is no time window of
sufficient length where we can assume that the incoming wave field is pure Stokes
waves and thus we will expect to always get oscillations in the force measurements
here. In our experiments, we required a distance of at least 10 wavelengths from the
wave maker to the cylinder.

All of the measurements of the force that are presented in the previous section
are conducted 12.41 m or 15.45 m from the wave maker. We were then able to use a
suitable time window, so that the problems discussed in this section do not relate to
the force measurements presented here.

5.2. Viscous effects

When the wave height is large compared to the cylinder diameter, the values of the
Keulegan–Carpenter number KC and the Reynolds number Re become important
parameters in the problem. In the present experiments 1 < KC < 3.6, and Re ∼
20 000, for the large waves. Sarpkaya (1986, figure 3) shows that the viscous drag
force on a circular cylinder is very small for these values of KC and Re. Here we
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Figure 19. Squares: measured amplitude and phase of the sixth-harmonic force with kR = 0.245.
Ferrant’s nonlinear computations are represented by the dashed line with crosses.

have estimated the drag force to have a magnitude of 0.1πρgAR2. We also note that
we have not observed flow separation in the experiments.

6. Conclusion
We have performed an extensive set of experiments with a vertical circular cylinder

in periodic waves. The purpose has been to measure the first- and higher-harmonic
horizontal wave loads on the cylinder. We have also performed an extensive set of
measurements of the incoming waves, without the cylinder present, to document that
the wave field is of pure Stokes waves in a relatively long time window. This is true for
waves with wave slope up to about 0.2. For larger wave slope, the incoming wave field
contains disturbances in addition to the Stokes waves. We found that the (periodic)
Stokes waves are present in a relatively early, but relatively long time window, at the
selected measurement positions. In a later time window, second-harmonic parasitic
waves appear, originating from the wave maker. Our recordings of these waves agree
with previous results by e.g. Schäffer (1996). Parasitic waves become present very
early when the recording position is close to the wave maker.



Higher-harmonic wave forces on a vertical cylinder 97

0

0.20

3

(b)

A
rg

(F
7
)

2

1

0

–2

–1

Ak
0.12 0.16 0.24

–3

0.12 0.16 0.20

0.6

(a)

|F
7|

/(
qg

A
7 R

–
4 )

Ak
0.24

0.5

0.4

0.3

0.2

0.1

Figure 20. Squares: measured/amplitude and phase of the seventh-harmonic force with
kR = 0.245. Ferrant’s nonlinear computations are represented by the dashed line with crosses.

Experiments with two cylinders of different radii have been undertaken. The larger
cylinder is placed further from the wave maker than the smaller one, such that the
distance relative to the cylinder radius is the same. The waves are also correspondingly
longer for the larger cylinder than for the smaller, so that the waves travel the same
number of wavelengths down the wave tank before they reach the cylinders. The only
difference between the experiments on the two different cylinders is the ratio of the
tank width to the radius of the cylinder, which is 6.3 for the larger cylinder and 8.3
for the smaller one. The results indicate that the limited width of the wave tank is
not important to the investigation, except close to resonance, where results are not
given, however. This is also confirmed by the comparisons with the theoretical models,
where the models assume a fluid which is unbounded horizontally. We have, on the
other hand, found that it is important to perform the measurements with the cylinder
at a sufficiently large distance from the wave maker, to avoid misleading results. In
our experiments the distance to the wave maker is more than ten wavelengths.

The nth harmonic force is made non-dimensional with respect to ρgAnR3−n, and
its phase is measured relative to the phase of the incoming waves. The measured
complex non-dimensional first-harmonic force is found to be approximately constant
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Figure 21. Comparison between measurements by Stansberg (1997) and our measurements (H&G).
The straight lines represent theoretical models. (a) Amplitude of the second-harmonic force. (b)
Amplitude of the third-harmonic force.

for all wave slopes investigated, i.e. for Ak up to about 0.2. We find that the first-
harmonic force is rather well predicted by the Morison equation or alternatively
the McCamy–Fuchs solution. The non-dimensional second-harmonic force is always
less than 10% of the non-dimensional first-harmonic force. Second-order models
(Molin 1979; Newman 1996b) are found to be in reasonable agreement with the
measurements for most of the wavenumbers, for small and moderate wave slope. The
second-harmonic force decreases with increasing wave slope and becomes significantly
smaller than predicted by the second-order models when Ak is around 0.2. The phase
of the second-harmonic force is reasonably constant as function of the wave amplitude
and is in good agreement with the second-order models for all wavenumbers.
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Figure 22. Measurements of the second-harmonic force with kR = 0.166 for the R = 3 cm cylinder.
The distance from the cylinder to the wave maker is 12.41 m. Early time window. (a) Late time
window.

0.05 0.10 0.15 0.20

Ak

(a)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

|F
2|/

(q
gA

2 R
)

0.7

0.05

0.6

0.5

0.4

0.3

0.2

0.1

0 0.10 0.15 0.20

(b)

Ak

Figure 23. As figure 22 but the distance from the cylinder to the wave maker is 6.33 m.

The measured third-harmonic force has a magnitude which agrees rather well with
M&M who assume a Stokes perturbation expansion, and with FNV who use an
asymptotic approach assuming Ak � 1, kR � 1 and A/R = O(1). This is true for all
investigated wavenumbers when the wave slope is small or moderate. The measured
|F3| is somewhat smaller than predicted by the above models when the wave slope
is large, however. The measured phase of F3 is in good agreement with the model
by M&M, for all wavenumbers, but differs significantly from the predictions by the
FNV model. Our results for the amplitude of the second- and third-harmonic forces
are found to compare well with a set of the measurements performed by Stansberg
(1997), for cylinders of larger scale in a wider wave tank than ours.

The measured fourth-harmonic force has an amplitude which to a rough approxi-
mation behaves as |F4|/(ρgA4R−1) ∼ kR when kR < 0.315. This force component has
a different behaviour when the wavenumber is larger than 0.315, however. We find
that the phase of the fourth-harmonic force varies with respect to the wavenumber,
but is relatively constant as function of the wave slope, like for the lower-harmonic
forces. We also present measurements of the fifth-, sixth- and seventh-harmonic
forces on the cylinders when the wavenumber is kR = 0.245. The magnitude of these
(non-dimensional) forces exhibits a pronounced decay with increasing amplitude and
becomes very small when Ak is larger than 0.2. The phases of these forces are rel-
atively constant in the whole wave amplitude range. From the few comparisons we
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have carried out, it seems that the nonlinear computations by Ferrant (1998) predict
the measured higher-harmonic forces well, in a limited wave amplitude range. It
would be interesting to know if this or other nonlinear methods can predict the other
measured results that are included in this investigation.

For three of the wavenumbers, the measurements are carried out with incoming
wave amplitude increasing up to the radius of the cylinder. At this value of the wave
amplitude, the second-, third- and fourth-harmonic forces all become of equal size.
The fifth-, sixth- and seventh-harmonic forces are, however, always smaller than the
lower harmonics.

We finally note some observations from the experiments additional to those already
described. In the early part of the force histories, where the incoming waves are not
yet periodic, rather intense higher harmonic forces may occur when the wave elevation
is sufficiently large. These higher-harmonic forces seem to be much more pronounced
than those due to incoming Stokes waves. The problem of higher-harmonic wave
loads in transient wave trains, leading to ringing, is currently under investigation in
the Hydrodynamic Laboratory at the University of Oslo.
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Appendix A. Instabilities from the set-up
The input to the wave maker is a pure sinusoidal movement. Depending on the

precision of the equipment that is used to move the wave maker, a narrow side band
will be introduced in the amplitude spectrum of the movement of the wave maker,
and thereby a narrow side band in the amplitude spectrum of the wave elevation. In
our experiments this possible side band in the wave elevation is so narrow that we
cannot measure it using a discrete Fourier transform over 10 wave periods. It would
however appear at some point, as a modulation, if the wave tank was long enough
for the waves to keep on propagating. The extent to which this side band gives rise
to instabilities will depend on the distance from the wave maker to the measuring
position, the breadth of the tank, the frequency of the waves, the accuracy of the
equipment that controls the wave maker and the precision of the wave tank (i.e. if
the walls of the wave tank are completely parallel). We have not observed side band
instabilities in the present experiments.

Appendix B. Some aspects of Fourier analysis of periodic signals
When analysing the measurements in this paper, we typically want to extract a

small higher-harmonic signal from a large signal, which is assumed to be periodic.
Typically the third harmonic can be from 10 to 400 times smaller than the first
harmonic. It is thus difficult to obtain the higher harmonics with high accuracy.

We will consider here some aspects of performing a Fourier analysis on a periodic
signal. The continuous function f(t) = a1 cos (Ω1t)+a2 cos (2Ω1t) is used as an example.
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Here t is time, Ω1 is the first-harmonic (or fundamental) angular frequency of the
signal, and a1 and a2 are the size of the first and second harmonic, respectively.

If we sample this continuous signal N times, with a sampling rate of fs (i.e.
t = n/fs), we get the sequence

f[n] = a1 cos [ω1n] + a2 cos [2ω1n], (B 1)

where the integer n is the index of the sequences and ω1 = Ω1/fs.
The Fourier transform (FT) F(ω) of this discrete sequence of length N, and the

corresponding synthesis equation are

F(ω) =

N−1∑
n=0

f[n]e−inω, f[n] =
1

2π

∫ π

−π
F(ω)einω dω. (B 2)

Note that the FT is periodic in ω with period of 2π, and that the frequency ω = π
corresponds to the continuous time frequency Ω = 1/2fs, i.e. the Nyquist frequency.
We also note that the first two components of a Fourier series with fundamental
frequency ωα can be found using

A1 =
2

N
|F(ωα)| A2 =

2

N
|F(2ωα)|, (B 3)

where A1 and A2 are the harmonic components resulting from the Fourier analysis. It
is, however, a1 and a2 that represent the actual size of the harmonic components of
the signal. We aim to show that a small discrepancy between the assumed frequency
ωα and the actual frequency ω1, may lead to a large discrepancy between A2 and a2

if a1/a2 is large.
If we let N (and hence time) approach infinity, we may write

F̃(ω) = lim
N→∞F(ω) = π

∞∑
k=−∞

(a1δ(ω − ω1 + 2πk) + a2δ(ω − 2ω1 + 2πk)

+a1δ(ω + ω1 + 2πk) + a2δ(ω + 2ω1 + 2πk)), (B 4)

where δ(ω) is the Dirac delta function. Even though the FT of a periodic infinite-length
signal is not summable, the result in (B 4) is provided by the theory of generalized
functions (Lighthill 1958), and is in common use in the field of time-discrete signal
processing.

Using the windowing theorem (e.g. Oppenheim & Schafer 1989), we can then show
that the FT of the time-limited sequence may be written as the periodic convolution

F(ω) =
1

2π

∫ π

−π
F̃(ωd)W (ω − ωd) dωd, (B 5)

where W (ω) is the FT of the windowing function (w[n] = 1 for n ∈ [0, N − 1] and 0
elsewhere) and has the form

W (ω) =

N−1∑
n=0

e−iωn = e−i(ω/2)(N−1) sin ( 1
2
ωN)

sin ( 1
2
ω)

. (B 6)

Note that W (0) = N, and that W (ω) is periodic in ω with period 2π.
Substituting (B 4) into (B 5) and calculating the integral gives the following expres-

sion for the FT (see also figure 24):

F(ω) =
a1

2
W (ω − ω1) +

a2

2
W (ω − 2ω1) +

a1

2
W (ω + ω1) +

a2

2
W (ω + 2ω1). (B 7)



102 M. Huseby and J. Grue

|F(x)|

–1–2 0 1 2

–x/x1

Figure 24. The FT of 10 wave periods, with a1/a2 = 10, Ω = 2× 1.25.

We now chose N so that the sampled sequence consists of precisely 10 periods of
the fundamental oscillation, i.e. N = 10(2π/Ω1)fs. Then ω1 = 10(2π/N). From (B 3),
(B 6) and (B 7) we have

A2 =
2

N
|F(2ω1)| = 2

N
|a1

2
W (ω1) +

a2

2
W (0) +

a1

2
W (3ω1) +

a2

2
W (4ω1)| = a2. (B 8)

We see that the second-harmonic component of the FT, A2, is equal to a2.
If we, however, assume that the fundamental frequency of the periodic signal is

a little different from ω1, we may have that A2 6= a2. Assuming the fundamental
frequency of the signal to be ωα = (1 + ε)ω1 (ε is a small number), we will sample
N = 10(2π/Ωα)fs points from the continuous signal. The main difference from the
previous case is that the width of the side lobes of W (ω) change. The second-harmonic
component of the FT will then be

|F(2ωα)|= |a1

2
W ((1+2ε)ω1)+

a2

2
W (2εω1)+

a1

2
W ((3+2ε)ω1)+

a2

2
W ((4+2ε)ω1)|. (B 9)

As an example, setting Ω1 = 2π × 1.25, a1/a2 = 50 and ε = 0.01 (i.e. we have
estimated the frequency of the signal wrongly by 1%), we obtain A2 = (2/N)|F(2ωα)| =
1.31a2.

Thus we see that in this example an error of 1% in the estimate of the fundamental
frequency of the signal gives an error in the second-harmonic amplitude of 31%.
The largest part of this error comes from the first term on the right of (B 9). The
reason for this is, as we have seen, that the width of the side lobes of the FT of
the windowing function is such that the first-harmonic component interferes with the
higher-harmonic component.

In our measurements, we believe that we have very good control of the frequency of
the waves. The results will however always be affected by the inconsistency between
the assumed frequency and the actual frequency, for instance caused by the need for
truncation of the frequency as a result of the finite number of sampling points. We
believe that it is important to understand the accuracy of Fourier analysis of small
higher-harmonic signals to be able to interpret the results correctly.
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